翻訳と辞書
Words near each other
・ Margie Sudre
・ Margie Wilcox
・ Margie Wright
・ Margie's Candies
・ Margie, Minnesota
・ Margilan
・ Margin
・ Margin (economics)
・ Margin (finance)
・ Margin (machine learning)
・ Margin (typography)
・ Margin Call (film)
・ Margin classifier
・ Margin for Error
・ Margin Free Market
Margin Infused Relaxed Algorithm
・ Margin of appreciation
・ Margin of error
・ Margin of Error (The Wire)
・ Margin of exposure
・ Margin of safety
・ Margin of safety (financial)
・ Margin on services
・ Margin Walker
・ Margina
・ Marginal
・ Marginal (album)
・ Marginal (economics)
・ Marginal (manga)
・ Marginal abatement cost


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Margin Infused Relaxed Algorithm : ウィキペディア英語版
Margin Infused Relaxed Algorithm
Margin-infused relaxed algorithm (MIRA)〔
〕 is a machine learning algorithm, an online algorithm for multiclass classification problems. It is designed to learn a set of parameters (vector or matrix) by processing all the given training examples one-by-one and updating the parameters according to each training example, so that the current training example is classified correctly with a margin against incorrect classifications at least as large as their loss.〔
〕 The change of the parameters is kept as small as possible.
A two-class version called binary MIRA〔 simplifies the algorithm by not requiring the solution of a quadratic programming problem (see below). When used in a one-vs.-all configuration, binary MIRA can be extended to a multiclass learner that approximates full MIRA, but may be faster to train.
The flow of the algorithm〔Watanabe, T. et al (2007): "Online Large Margin Training for Statistical Machine Translation". In: ''Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning'', 764–773.〕〔Bohnet, B. (2009): ''Efficient Parsing of Syntactic and Semantic Dependency Structures''. Proceedings of Conference on Natural Language Learning (CoNLL), Boulder, 67–72.〕 looks as follows:
Input: Training examples T = \
Output: Set of parameters w
i ← 0, w^ ← 0
for n ← 1 to N
for t ← 1 to |T|
w^ ← update w^ according to \
ii + 1
end for
end for
return \frac w^}
The update step is then formalized as a quadratic programming〔 problem: Find min\|w^ - w^\|, so that score(x_t,y_t) - score(x_t,y')\geq L(y_t,y')\ \forall y', i.e. the score of the current correct training y must be greater than the score of any other possible y' by at least the loss (number of errors) of that y' in comparison to y.
==References==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Margin Infused Relaxed Algorithm」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.